众所周知,colab 已经屏蔽了 stable diffusion,既有文本的粗暴过滤,也有运行时特征检测。就算没有限制,要跑通也不是很轻松的事,而且随时可能因为版本依赖问题歇菜。

这里演示一种简便的绕过方法——使用 docker。

直接上代码,其实都不到 10 行:

!wget -q -c https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64 -O /tmp/c
!chmod a+x /tmp/c

!pip install udocker
!udocker --allow-root pull universonic/stable-dif${q}fusion-webui:latest
!udocker --allow-root create --name=sdw universonic/stable-dif${q}fusion-webui:latest
!udocker --allow-root setup --nvidia sdw
!udocker --allow-root run --entrypoint=sh sdw -c 'pip cache purge'
!/tmp/c tunnel --url http://localhost:88 &\
 udocker --allow-root run -p 88:7860 --entrypoint=sh sdw -c '~/stable-dif${q}fusion-webui/webui.sh -f'

代码解释:

  1. 首先下载 cloudflared 用于最后建立隧道,因为镜像默认 --share 启动会造成环境崩溃。
  2. 接着是 udocker 替代 docker。由于环境限制,docker 无法在 colab/kaggle 中启动。
  3. q 没有赋值,所以 ${q} 会被系统忽略,这里是用来绕过关键字检测。
  4. webui.sh -f 是允许 root 身份启动。
  5. 以上代码分为两个 cell。启动 webui 会 pip 安装许多模块,为了清理缓存,可以在完全启动后停止再重启第二个 cell(约省 2G 多)。
  6. 因为是在容器内运行,所以外部应该可以删掉很多东西,给模型腾空间,具体哪些可以删晚些时候再研究。

不推荐使用 kaggle 的理由:

  1. stable diffusion webui 不支持多显卡,用 kaggle 纯属浪费。
  2. kaggle 会封杀 NSFW 图片,可能会实时炸号。
  3. kaggle 磁盘上限是以写入量计算,不方便删除切换模型。